Пособие для ремонтника

75. Гидравлика: Понятие потерь давления

75. Гидравлика: Понятие потерь давления

Напомним, что этот вопрос вкратце уже упоминался в разделе 18 "Проблема внезапного вскипания хладагента в жидкостной магистрали ". Чтобы пополнить наши знания в этой области, проведем небольшой мысленный опыт с помощью схем на рис. 75.1 и 75.2. Для проведения этого опыта нам потребуются ручной кран на сливной магистрали градирни, при открытии которого градирня опорожняется, и поплавковый клапан, поддерживающий постоянный уровень воды в баке градирни. На выходе из сливной магистрали в точке В (перед краном) установим манометр, проградуированный в барах. Этот манометр будет показывать нам давление в точке В. Установим также стеклянную трубку, которая будет показывать давление в точке В в метрах водяного столба (м вод. ст.), то есть высоту уровня воды, эквивалентную давлению в точке В.
490
На рис. 75.1 слева {схема 1) кран на сливной магистрали закрыт. Уровень воды в трубке находится на высоте 5 м, то есть давление в точке В равно 5 м вод. ст. Манометр в точке В показывает величину избыточного давления, обусловленного высо-
той столба жидкости, то есть 5 м вод. ст. или 0,5 бар: давление, измеренное манометром, равно высоте столба.
На рис. 75.1 справа (схема 2) кран на сливной магистрали открыт. Под действием силы тяжести, сразу же после открытия крана, вода из бака начинает сливаться. Как только вода приходит в движение, ее уровень в стеклянной трубке падает до 4,5 м: следовательно, потери давления на участке от точки А до точки В равны 5 - 4,5 = 0,5 м вод. ст. Манометр в точке В также показывает падение давления на величину потерь, которые равны 0,5 - 0,45 = 0,05 бар (то есть 0,5 м вод. ст.).
491
Отсюда делаем вывод: как только вода пришла в движение, появились потери давления.
Эти потери обусловлены вязкостью воды и за-висят от ее скорости. В основном, потери давления определяются силой трения движущейся воды о внутреннюю поверхность стенок трубопровода, которая имеет ту или иную шероховатость.
Потери давления растут:
► с ростом длины трубы;
► с падением внутреннего диаметра (площади проходного сечения) трубы;
► с ростом скорости воды (то есть расхода) в трубе.


Потери давления приводят к дополнительным затратам энергии. Они порождают шумы в трубопроводах и незначительный нагрев воды. Чем больше скорость воды, тем больше шум, особенно там, где поток испытывает сужения. Например, в кранах, вентилях и т.п. Этот шум может доставлять определенные неудобства в тех случаях, когда трубопроводы проложены в жилых помещениях или поблизости от них.
Поэтому диаметры трубопроводов должны выбираться таким образом, чтобы скорость жидкости в них не превышала определенных значений при максимальных потребных расходах. Например, сегодня существуют такие рекомендации:
► Для труб с внутренним диаметром 15 мм максимальная скорость жидкости равна 0,5 м/с.
► Для труб с внутренним диаметром 80 мм максимальная скорость жидкости равна 1,2 м/с.
Такая разница в рекомендуемых значениях скоростей обусловлена следующим
В трубах диаметром 15 мм периметр поверхности трения П=1,5смх7г«5 см, площадь проходного сечения S1 « 2 см2, а в трубах диаметром 80 мм периметр поверхности трения П = 8 см х п к 25 см при площади проходного сечения S2 * 50
Таким образом, при переходе от трубы с внутренним диаметром D1 = 15 мм к трубе с диаметром D2 = 80 мм
периметр поверхности трения возрастает в 5 раз, тогда как площадь проходного сечения увеличивается в 25 раз. В результате сила трения (а следовательно, и потери давления) в трубе диаметром 15 мм при скорости потока 0,5 м/с будет примерно такой же, как и в трубе диаметром 80 мм при скорости потока 1,2 м/с. Поэтому чем больше диаметр трубы, тем больше в ней может быть скорость потока при одной и той же величине потерь давления на трение.
В существующих сегодня установках диаметры жидкостных трубопроводов выбирают с таким расчетом, чтобы при максимальном расходе скорость потока в них приводила бы к потерям давления, как правило, в диапазоне от 10 до 20 мм вод. ст. на погонный метр длины трубопровода.

 75.1. УПРАЖНЕНИЕ 1. Оценка потерь давления

492
Для оценки потерь давления, обусловленных местными сопротивлениями (повороты, тройники, запорные вентили и т.д.), принято использовать понятие эквивалентной длины. Например, можно считать, что потери давления при повороте потока на 90° эквивалентны потерям давления на трение на отрезке трубы того же диаметра длиной 0,8 м*.
Теперь попробуйте оценить порядок величины потерь давления в трубе внутренним диаметром 65 мм и полной длиной 50 м, имеющей 6 поворотов на 90° (см. рис. 75.4).

Решение упражнения 1
При условии, что диаметр трубы определен правильно, можно предположить, что потери давления на трение составляют от 10 до 20 мм вод. ст. на погонный метр длины трубы. При выполнении оценки допустим, что потери давления на трение равны среднему значению указанного диапазона, то есть 15 мм вод. ст./м. В тоже время, 6 поворотов на 90° эквивалентны по величине потерь давления участку прямой трубы того же диаметра длиной 6 х 0,8 м = 4,8 м. Следовательно, полная эквивалентная длина нашей трубы будет равна 50 м + 4,8 м « 55 м. Таким образом, полные потери давления в этой трубе составят 55 м х 15 мм вод. ст/м = 825 мм вод. ст « 0,8 м вод. ст.
* Это утверждение не всегда справедливо. В общем случае длину участка прямой трубы, эквивалентную по величине потерь давления какому-либо местному сопротивлению, находят по формуле Ьэкв = Щм/Ялтл Т№ D — внутренний диаметр трубы, §м — коэффициент местных потерь и Ятр — коэффициент трения жидкости о внутреннюю поверхность стенок трубы (прим. ред.).

ВЛИЯНИЕ РАЗНОСТИ УРОВНЕЙ НА ПОТЕРИ ДАВЛЕНИЯ
Продолжим наши мысленные эксперименты. На рис. 75.5 представлены две абсолютно одинаковые схемы, отличающиеся только тем, что высота бака градирни на схеме 1 над сливным краном больше, чем высота бака на схеме 2.
Длина сливных труб в обеих схемах одна и та же, диаметры труб также одинаковы. Из-за разности уровней давление в точке В схемы 1 будет выше, чем давление в точке В схемы 2. Следовательно, если полностью открыть сливные краны в обеих схемах, расход Qvl будет выше, чем расход Qv2. Для того, чтобы сравнивать величины потерь давления в зависимости от разности уровней, необходимо прикрыть кран схемы 1 с целью выравнивания расходов, а следовательно, и скоростей потоков жидкости в трубопроводах схем 1 и 2.
493
Как только мы это сделаем, то сразу же увидим, что при равенстве расходов Qvl и Qv2 потери давления для обеих схем будут в точности совпадать: Ahl = Ah2.

Вывод: потери давления на трение и местные сопротивления никоим образом не зависят от разности уровней трубопровода. Они определяются только расходом жидкости, длиной трубопровода, внутренним диаметром и шероховатостью стенок трубы.

 75.2. УПРАЖНЕНИЕ 2. Влияние потерь давления на характеристики потока

494
Рассмотрим систему, представленную на рис. 75.6.
При движении воды по трубопроводу появляются потери давления АЫ, которые зависят от длины трубопровода, его диаметра и расхода воды (то есть скорости воды в трубе).
Установим на выходе из бака фильтр.
► Как изменятся потери давления Ahl?
► Как изменится расход?
► Как изменится скорость воды?
Решение на следующей странице...

Решение упражнения 2
Фильтр, установленный на трубопроводе (см. рис. 75.7 справа), ведет себя точно так же, как любое местное сопротивление (поворот, вентиль и др.): он является дополнительным препятствием потоку жидкости, то есть создает дополнительные потери давления при прохождении воды. Эти потери добавляются к потерям на трение. В результате полные потери давления на участке от точки С до точки В возрастут (Ah2 > Ah 1).

495Теперь рассмотрим, как изменится скорость течения воды в трубе. При установке дополнительного сопротивления, например, фильтра, потери давления на отрезке С-В возрастают (Ah2 > Ah 1). Но это сопротивление также препятствует и прохождению воды (как это делал бы ручной вентиль, сопротивление которого возрастает при его закрытии): следовательно, расход воды будет уменьшаться.
Поскольку при этом в обоих случаях внутренний диаметр трубы на участке С-В не меняется, уменьшение расхода приводит к снижению скорости потока воды в трубе: скорость V2 будет заметно ниже сорости VI.

При росте потерь давления в контуре расход жидкости падает. Поскольку расход падает, неизбежно снижается и скорость потока.

Обратите внимание на дополнительные условия: следует отчетливо понимать, что скорость потока воды абсолютно одинакова на входе в фильтр и на выходе из него. Поскольку внутренний диаметр трубы одинаков по всей длине, скорость будет в точности одна и та же в каждом сечении трубы.
Скорость потока жидкости при постоянном расходе строго одна и та же в каждом сечении трубы постоянного внутреннего диаметра.

 75.3. УПРАЖНЕНИЕ 3. Изменение расхода при изменении скорости

По трубе длиной 50 м с внутренним диаметром 80 мм вода течет со скоростью 1 м/с. Как по-вашему, что произойдет с расходом, если скорость удвоится?
Решение на следующей странице...

Решение упражнения 3
Мы нарушим традицию, которая действует в нашем руководстве, поскольку здесь мы вынуждены привести несложные формулы и выполнить очень простые расчеты. Пожалуйста, извините нас за это, но вопросы гидравлики довольно сложны и иногда вам могут потребоваться отдельные базовые понятия для того, чтобы разобраться в некоторых явлениях, которые, тем не менее, мы будем стараться объяснять как можно проще.
Для начала вы должны вспомнить, что объемный расход, как правило, измеряется в м3/ч или м3/с (см. раздел 41 "Измерение расхода воздуха"}.
496
Скорость потока и расход воды находятся в тесной взаимосвязи:
Qv                        V         х        S
(м3/с)       =           (м/с)      х      (м2)
Расход      =        Скорость   х Площадь
Рассчитаем площадь проходного сечения трубы диаметром 80 мм (см. рис. 75.9): Рис. 75.9.                                 S = 3,14 х 0,082 / 4 = 0,005 м2.
Теперь можно найти расходы:
► Qvl = 1 м/с х 0,005 м2 = 0,005 м3/с   = 0,005 х 3600 = 18 м3/ч.
► Qv2 = 2 м/с х 0,005 м2 =   0,01 м3/с   =   0,01 х 3600 = 36 м3/ч.
Таким образом, для данного диаметра трубы расход прямо пропорционален скорости потока.
 При удвоении скорости потока жидкости в трубе расход также удваивается.

 75.4. УПРАЖНЕНИЕ 4. Изменение расхода при изменении диаметра трубы

Мы только что нашли, что при скорости потока жидкости 1 м/с в трубе диаметром 80 мм расход жидкости равен 18 м3/ч.
Теперь удвоим внутренний диаметр трубы, то есть возьмем трубу с внутренним диаметром 160 мм. Чему будет равен расход жидкости в этой трубе при той же скорости потока

Решение упражнения 4
При скорости потока 1 м/с расход в трубе с внутренним диаметром 80 мм равен 18 м3/ч. Если внутренний диаметр трубы будет равен 160 мм, то площадь ее проходного сечения станет S = 3,14 х 0,1 б2 / 4 = 0,02 м2. При скорости потока 1 м/с расход в этой трубе будет равен 1 х 0,02 = 0,02 м3/с или 0,02 х 3600 = 72 м3/ч вместо прежних 18 м3/ч. Иначе говоря, расход вырастет в 4 раза.

Внимание! Не путайте понятие "внутренний диаметр " и площадь проходного сечения: если диаметр удваивается, то площадь проходного сечения увеличивается в 4 раза!

СООТНОШЕНИЕ МЕЖДУ РАСХОДОМ И ДАВЛЕНИЕМ
Рассмотрим поплавковый клапан, предназначенный для подачи водопроводной воды в бак градирни (см. рис. 75.11). Допустим, что полностью открытый клапан при давлении воды в сети 2 бара обеспечивает расход 10 л/мин.

497Для того, чтобы удвоить расход, то есть обеспечить расход через клапан, равный 20 л/мин. необходимо давление воды в сети увеличить в 4 раза.

Запомните! При слабом давлении воды в водопроводной сети расход будет небольшим. Чтобы удвоить расход, давление в сети нужно повысить в 4 раза.

Разумеется, что на практике для удвоения расхода так не поступают. Если бы на самом деле повышали давление в сети, это породило бы многие проблемы: диаметр трубопровода пришлось бы делать очень малым, вода бы в трубах сильно "гудела" и т. д.
Проведем такую аналогию: если автомагистраль загружена, то для того, чтобы повысить ее пропускную способность, водителей не заставляют ехать быстрее, а либо делают новую полосу, либо строят объездной путь! То же самое предпринимают и для увеличения расхода жидкости в трубе: увеличивают площадь проходного сечения трубы.
При заданном расходе это приводит к снижению скорости потока воды в трубе (и, следовательно, шума), а потребное для обеспечения этого расхода давление уменьшается

СООТНОШЕНИЕ МЕЖДУ РАСХОДОМ И ПОТЕРЯМИ ДАВЛЕНИЯ
498
В трубе с внутренним диаметром 80 мм предполагается удвоить расход. Что произойдет с потерями давления? На первый взгляд может показаться, что поскольку при удвоении расхода скорость потока удваивается, то и потери давления также должны удваиваться. К сожалению, это не так.
При удвоении расхода потери не удваиваются, а увеличиваются в четыре раза: если расход вырос в 2 раза, потери давления возрастут в 4 раза!
В примере на рис. 75.13 при скорости потока 1 м/с потери давления АР = 2 м вод. ст., а при увеличении скорости до 2 м/с потери давления умножаются на 4: АР = 2 х 4
Потери давления пропорциональны квадрату расхода.
Для получения дополнительной информации см. раздел 95 "Несколько примеров расчета потерь давления ".

 75.5. УПРАЖНЕНИЕ 5. Изменение потерь давления при изменении расхода

 Показан участок трубопровода, пропускающий воду со скоростью I м/с. Манометры показывают давление в различных точках этого трубопровода. Из показаний манометров можно сделать следующие выводы.
При скорости водяного потока 1 м/с потери давления составляют:
- на фильтре АРф = 2 - 1,8 = 0,2 бар;
- на вентиле АРв = 1,8 - 1,7 = 0,1 бар.
Что покажут манометры на выходе из фильтра и на выходе из вентиля, если скорость потока в трубе удвоится? Решение этого упражнения приведено ниже, однако прежде, чем знакомиться с ним, попробуйте поразмышлять самостоятельно.

Решение упражнения 5

Скорость удвоилась, следовательно расход тоже удвоился. В результате потери давления на
фильтре и на вентиле вырастут в 4 раза.
Теперь потери давления на фильтре АРф = 0,2 бар х 4 = 0,8 бар, то есть манометр на выходе
из фильтра покажет 2 - 0,8 =1,2 бар.
Потери давления на вентиле АРв = 0,1 бар х 4 = 0,4 бар, то есть манометр на выходе из
вентиля покажет 1,2 - 0,4 = 0,8 бар.
Заметьте, что общие потери давления на этом участке вырастут с 0,3 до 1,2 бар: то есть тоже в 4 раза.