Пособие для ремонтника
65. Трехфазные двухскоростные двигатели
65. Трехфазные двухскоростные двигатели |
Трехфазные двигатели, позволяющие менять число оборотов, очень часто используются в воздушных охладителях для того, чтобы обеспечивать изменение расхода воздуха в соответствии с изменением его температуры: малая скорость (МС) при низкой температуре, например, зимой, и большая скорость (БС) при высокой температуре, например, летом (см. раздел 20.5).
Как правило, двухскоростными двигателями также оснащаются градирни (их работа подробно рассматривается в разделе 73). На рис. 65.1 показан вариант градирни, оборудованной двухскорост-ным двигателем (поз. 1) для привода центробежного вентилятора (поз. 2).
При выключенном вентиляторе и работающем компрессоре температура воды на входе в градирню (поз. 3) начинает повышаться. Термостат (поз. 4), установленный на выходе из градирни, обнаруживает подъем температуры и выдает команду на запуск двигателя с малой скоростью (МС). Если температура воды продолжает расти, термостат переводит двигатель на большую скорость (БС) и градирня работает с максимальной производительностью.
ДВИГАТЕЛЬ С ДВУМЯ РАЗДЕЛЬНЫМИ ОБМОТКАМИ
Это самый простой двигатель. Он представляет собой обычный двигатель, рассчитанный на одно значение напряжения трехфазного переменного тока и имеет клеммную коробку с 6 клеммами (поз. А на рис. 65.2). Схема подключения обмоток этого двигателя к клеммам показана в нижней части рис. 65.2.
Внутри такого двигателя имеются две абсолютно независимых обмотки, каждая из которых предназначена для реализации разного числа оборотов. Если питание подключено к клеммам Ш, IV и 1W двигатель вращается с малой скоростью МС (поз. В). Если питание подано на клеммы 2U, 2V и 2W, двигатель вращается с большой скоростью БС (поз. С).
ВНИМАНИЕ! Схема на рис. 65.2 очень похожа на схему двигателя с раздельным подключением обмоток PW (см. пункт 64.1). Чтобы избежать ошибок, внимательно ознакомьтесь с табличкой на корпусе двигателя и изучите схемы, в противном случае возможны непоправимые последствия.
Действительно, в отличие от двигателя PW, обмотки двухско-ростного двигателя, схема которого изображена на рис. 65.2, никогда не должны быть запитаны вместе, иначе двигатель мгновенно сгорит!
65.1. УПРАЖНЕНИЕ 1. Двигатель с раздельными обмотками |
Нарисуйте схему подключения обмоток и управления работой двухскоростного трехфазного двигателя, предназначенного для привода вентилятора градирни, зная, что переключение скоростей обеспечивается термостатом с двухступенчатой регулировкой температуры.
В помощь вам на рис. 65.3 приведено обозначение клемм, имеющееся внутри клеммной коробки.
Решение упражнения 1
Схема подключения обмоток представлена на рис. 65.4.
Двигатель может вращаться с МС (питание подано на клеммы 1U, 1V и 1W) или с БС (запита-ны клеммы 2U, 2V и 2W).
Треугольник вершиной вниз указывает на то, что между контакторами МС и БС существует механическая блокировка. Благодаря ей, как только один из контакторов замкнут, становится невозможным замкнуть другой контактор, даже если вы случайно нажали на него рукой.
Такой тип блокировки позволяет избежать ошибки, обусловленной человеческим фактором. Действительно, если замкнуть оба этих контактора одновременно, даже на несколько тысячных долей секунды, двигатель может мгновенно сгореть: напоминаем, что при нормальной температуре скорость электронов равна примерно 250000 км/с, то есть более чем 6 раз в секунду позволяет обернуться вокруг Земли!
Существует и другая опасность: представим себе, что двигатель вращается со скоростью 960 об/мин (МС) и в этот момент размыкается контактор МС и замыкается контактор БС, чтобы обеспечить вращение со скоростью 1450 об/мин, но в другом направлении! Момент сопротивления на валу двигателя в этом случае оказался бы невероятно большим, двигатель подвергся бы очень высоким механическим и электрическим нагрузкам и, в лучшем случае, сработало бы реле тепловой защиты. В худшем случае двигатель просто бы сгорел.
Поэтому абсолютно необходимо, чтобы при переключении с режима МС на режим БС двигатель продолжал вращаться в том же направлении. То есть порядок подключения фаз должен соблюдаться одинаковым. Иначе говоря, если фаза L1, например, подключена к клемме Ш для режима МС, то эта же фаза L1 должна быть подведена и к клемме 2U для режима БС
А кстати, прежде чем читать дальше, вы нарисовали схему управляющей цепи?
Принципиальная схема цепи управления представлена на рис. 65.5.
Если приборы контроля, управления и безопасности разрешают запуск двигателя, напряжение подается на контакт 2. Если реле тепловой защиты (контакты 2-3) и плавкий предохранитель (контакты 3-4 и 4-5) замкнуты, напряжение подается на контакт 5 регулятора температуры воды на выходе из градирни, который является общим для двух ступеней регулирования температуры.
Допустим, что температура воды низкая. Тогда оба контакта 5 разомкнуты и обмотки МС, БС и R не за-питаны. Когда температура воды начнет расти, контакты 5-6 замыкаются и через нормально замкнутые контакты 6-7 реле R подается питание на реле МС, обеспечивающее работу двигателя на режиме МС.
При этом размыкаются нормально замкнутые контакты 8-9 реле МС. Когда расход теплой воды в градирню увеличится и температура воды поднимется еще больше, регулятор температуры замкнет контакты 5-8. В результате будет подано напряжение на реле R, вследствие чего разомкнутся контакты 6-7, обесточится реле МС и замкнутся контакты 8-9 реле МС. Напряжение поступит на реле БС и двигатель перейдет на режим БС (заметим, что в этом случае момент сопротивления на валу двигателя будет очень небольшим, поскольку двигатель уже работал на режиме МС).
Далее, если температура воды упадет, реле-регулятор температуры разомкнет контакты 5-8 второй ступени. Вследствие этого будет снято напряжение с реле БС и реле R. Контакты 6-7 реле R замкнутся, будет подано напряжение на реле МС, после чего разомкнутся контакты 8-9 и двигатель вновь перейдет на режим МС.
В нашем примере двигатель на режиме БС вращался со скоростью 1450 об/мин и, как только разомкнутся контакты 8-9, он тут же переходит на режим МС, когда вращение осуществляется со скоростью 960 об/мин. Иначе говоря, происходит мгновенное замедление скорости вращения от значения 1450 об/мин до значения 960 об/мин. Усилие, необходимое при этом для того, чтобы затормозить двигатель, является причиной возникновения значительных механических нагрузок и, как следствие, заметного пика по току в цепи питания обмотки МС.
Этот недостаток можно устранить (см. рис. 65.6), установив вместо реле мгновенного срабатывания реле R с временной задержкой (такое реле часто называют реле замедленного действия).
В тот момент, когда по команде регулятора температуры размыкаются контакты 5-8 второй ступени, реле БС обесточивается, также как и обмотка реле R замедленного действия (рис. 65.6). Однако контакты 6-7 реле R остаются разомкнутыми в течение заданного времени задержки (в данном случае 3 секунды) после снятия с него напряжения. В течение этого времени у нас не подается напряжение ни на обмотку БС, ни на обмотку МС. Вращение двигателя замедляется, причем тем быстрее, чем больше момент сопротивления на вентиляторе.
Спустя 3 секунды контакты 6-7 реле R замыкаются.
К этому моменту вращение двигателя замедляется до скорости, близкой к 960 об/мин. На обмотку МС подается напряжение и двигатель продолжает вращаться со скоростью 960 об/мин не испытывая ни механических пиковых нагрузок, ни забросов по току.