Пособие для ремонтника

46. Термостатические трв. Дополнительные сведения

46. Термостатические трв. Дополнительные сведения 

Невозможно изучать механизм различных аномалий, которые могут происходить в холодильном контуре, если непонятен до конца принцип работы ТРВ.
Поэтому, хотя мы уже изучали работу термостатических ТРВ с внутренним уравниванием давления (см. раздел 4. "Работа терморегулирующего вентиля "), в настоящем разделе мы дополним эту информацию, проведя детальный анализ различных типов ТРВ, наиболее часто используемых в контурах с прямым циклом расширения.
А) Термостатические ТРВ с внутренним уравниванием давления

288
Допустим, что управляющий тракт ТРВ с внутренним уравниванием давления (который представлен на рис. 46.1), заправлен R22 и используется в составе кондиционера, также работающего на R22. ТРВ настроен таким образом, чтобы его производительность в точности соответствовала производительности испарителя (см. раздел 8.3. "Метод настройки ТРВ").
Тогда температура кипения, измеренная на установившемся режиме, составит, напрмер, 4°С (то есть 4,6 бар), а перегрев в термобаллоне будет равен 7К. При этом температура термобаллона составит 11°С, что соответствует давлению 6 бар, следовательно сила, действующая в полости термобаллона (Fb) и обеспечивающая открытие ТРВ, будет эквивалентна давлению в 6 бар.
Сила, действующая на мембрану снизу (Fo), соответствует давлению в полости испарителя (то есть 4,6 бар) и работает на закрытие ТРВ. Это означает, что для находящегося в равновесии ТРВ регулировочная пружина развивает усилие закрытия ТРВ (Fr), соответствующее давлению 6 — 4,6 =1,4 бар.
Если, при находящемся в равновесии ТРВ, температура воздуха на входе в испаритель возрастает, содержащаяся в нем жидкость кипит более интенсивно, и точка А отодвигается внутрь испарителя. Участок трубы, на котором обеспечивается перегрев пара, становится длиннее и температура термобаллона повышается. Сила открытия Fb растет, следовательно равновесие нарушается, что приводит к дальнейшему открытию ТРВ и более интенсивному притоку жидкости в испаритель. Точка А вновь сдвигается к выходу из испарителя, восстанавливая новое состояние равновесия, соответствующее настройке ТРВ на перегрев на 7 К.

Напротив, когда температура воздуха на входе в испаритель падает, жидкость кипит менее интенсивно и точка А сдвигается к термобаллону. В результате, перегрев и температура термобаллона уменьшаются. Сила открытия Fb снижается, что нарушает равновесие и приводит к закрытию ТРВ. Точка А вновь отодвигается внутрь испарителя до тех пор, пока не установится новое положение равновесия, соответствующее настройке ТРВ на перегрев 7 К.
Теоретически, таким образом поддерживается постоянный перегрев в 7К независимо от условий работы. Однако на практике это не вполне так. Чтобы лучше понять, почему практика отличается от теории, представим себе, что тот же самый ТРВ, настроенный тем же самым образом, питает тот же самый испаритель, но потери давления при этом очень велики (составляют 1 бар в распределителе жидкости, см. рис. 46.2).

289
При этом сила Fo, действующая на мембрану ТРВ снизу, всегда эквивалентна давлению в 4,6 бар. Поскольку настройка пружины неизменна, плунжер ТРВ будет находиться в равновесии, когда сила Fb, обусловленная давлением в полости термобаллона, будет эквивалентна 6 бар, то есть, когда температура термобаллона будет равна П°С.
Но если на выходе из ТРВ температура жидкости равна 4°С, то на выходе из распределителя .-жидкости она равна -2°С!
Для того, чтобы обеспечить температуру термобаллона, равную 11°С, последняя капелька жидкости при температуре -2°С обязательно должна выкипеть гораздо раньше, например, в точке А, тогда перегрев составит 13К. Испаритель при этом запитан хуже, а располагаемая холо-допроизводительность становится явно меньшей!

В итоге, из наших наблюдений мы можем сделать следующий вывод. При повышении потерь давления в испарителе перегрев повышается. И наоборот, перегрев падает, когда уменьшаются потери давления в испарителе.
Что же из этого следует? Априори вы можете думать, что достаточно изменить настройку ТРВ таким образом, чтобы вновь найти допустимую величину перегрева.

В данном конкретном случае вы правы, однако как это сделать, если потери давления в испарителе постоянно меняются, то есть в случае, когда расход хладагента в контуре переменный (например, если на один испаритель работают несколько параллельно соединенных компрессоров или один компрессор располагает несколькими ступенями производительности)?

290
Для лучшего понимания рассмотрим теперь многоцилиндровый компрессор, располагающий 3 ступенями производительности за счет изменения числа работающих цилиндров, который подключен к одному испарителю.
Возьмем случай, когда компрессор дает только 33% от полной производительности за счет того, что в работе находится только один из трех (№2) цилиндров (см. рис. 46.3). Настройка ТРВ С ВНУТРЕННИМ УРАВНИВАНИЕМ обеспечивает перегрев, равный 7 К. Поскольку производительность компрессора низкая, расход хладагента очень небольшой и потери давления в испарителе также незначительные.
Представим теперь, что температура в охлаждаемом объеме резко возросла и система регулирования выводит компрессор на 100% производительности путем включения в работу цилиндров 1 и 3. Поскольку теперь работают все цилиндры, расход хладагента также резко возрастает, что приводит к заметному росту потерь давления в испарителе.

Из-за того, что потери давления в испарителе резко увеличились, ТРВ с внутренним уравниванием обусловливает заметное повышение перегрева, вследствие чего наполнение испарителя падает как раз в тот момент, когда требуется максимальная холодопроизводительность!
И наоборот, если настройка ТРВ на заданный перегрев была произведена тогда, когда компрессор давал 100% своей производительности, по мере ее падения, обусловленного работой системы регулирования, расход хладагента будет падать, потери давления уменьшаться, обусловливая снижение перегрева. Гидроудар обеспечен!
Как же решить эту проблему? Не волнуйтесь, мы рассмотрели чисто теоретический пример, целью которого является дальнейшее укрепление ваших знаний в области процессов, которые управляют работой холодильного контура.
На самом деле все ТРВ, используемые в составе холодильных установок такого типа (с компрессорами мощностью в несколько десятков кВт), оснащены линией внешнего уравнивания (сейчас мы приступим к их изучению) и применение в таких установках ТРВ с внутренним уравниванием принесет вам массу неприятностей (подумайте об этом, отвечая на вопрос упражнения №1 настоящего раздела).

Б) Термостатический ТРВ с внешним уравниванием давления
Продолжая наш анализ, рассмотрим теперь последствия такого же повышения потерь давления в испарителе, если использовавшийся до настоящего времени ТРВ с внутренним уравниванием заменен моделью с внешним уравниванием. На моделях с внешним уравниванием сила закрытия ТРВ Fo не зависит больше от давления над седлом клапана ТРВ, то есть от давления на выходе из ТРВ, а определяется давлением на выходе из испарителя. Вновь рассмотрим предыдущий пример с ТРВ этого типа (см. рис. 46.4)

291
Сила Fo, обусловленная давлением кипения, измеряемым на выходе из испарителя, эквивалентна давлению в 3,6 бар. Настройка пружины неизменна и всегда соответствует давлению в 1,4 бар. Это означает, что ТРВ будет находиться в равновесии, когда давление в термобаллоне будет равно 5 бар, что для R22 соответствует температуре 6°С.
Последняя капелька жидкости, выкипая при -2°С, будет обеспечивать поддержание перегрева на уровне 8 К вместо 13 К, получавшихся в предыдущем варианте для модели ТРВ с внутренним уравниванием, в точно таких же, как ранее, условиях.
Заметим, что если потери давления нулевые, на выходе из испарителя устанавливается давление в 4,6 бар и ТРВ с внешним уравниванием будет работать точно так же, как и модель с внутренним уравниванием.
При замене термостатического ТРВ с внутренним уравниванием на модель с внешним уравниванием не только не будет никаких недостатков, а даже напротив, между началом рабочего цикла (повышенное давление кипения; огромные потребности в холоде; ТРВ почти полностью открыт, большой расход жидкости через испаритель и, следовательно, высокие потери давления в нем) и его окончанием (давление кипения упало, потому что полный перепад температуры почти постоянный; потребности в холоде снизились; ТРВ почти полностью закрыт; расход хладагента упал и, следовательно упали потери давления в испарителе) перегрев будет оставаться гораздо более стабильным.

Итак, только ТРВ с внешним уравниванием позволяет обеспечить относительно стабильный перегрев при переменных потерях давления в испарителе, то есть когда расход хладагента в контуре может меняться в очень широких пределах.

Допустим, что управляющий тракт ТРВ с внутренним уравниванием давления (который представлен на рис. 46.1), заправлен R22 и используется в составе кондиционера, также работающего на R22. ТРВ настроен таким образом, чтобы его производительность в точности соответствовала производительности испарителя (см. раздел 8.3. "Метод настройки ТРВ").
Тогда температура кипения, измеренная на установившемся режиме, составит, напрмер, 4°С (то есть 4,6 бар), а перегрев в термобаллоне будет равен 7К. При этом температура термобаллона составит 11°С, что соответствует давлению 6 бар, следовательно сила, действующая в полости термобаллона (Fb) и обеспечивающая открытие ТРВ, будет эквивалентна давлению в 6 бар.
Сила, действующая на мембрану снизу (Fo), соответствует давлению в полости испарителя (то есть 4,6 бар) и работает на закрытие ТРВ. Это означает, что для находящегося в равновесии ТРВ регулировочная пружина развивает усилие закрытия ТРВ (Fr), соответствующее давлению 6 — 4,6 =1,4 бар.
Если, при находящемся в равновесии ТРВ, температура воздуха на входе в испаритель возрастает, содержащаяся в нем жидкость кипит более интенсивно, и точка А отодвигается внутрь испарителя. Участок трубы, на котором обеспечивается перегрев пара, становится длиннее и температура термобаллона повышается. Сила открытия Fb растет, следовательно равновесие нарушается, что приводит к дальнейшему открытию ТРВ и более интенсивному притоку жидкости в испаритель. Точка А вновь сдвигается к выходу из испарителя, восстанавливая новое состояние равновесия, соответствующее настройке ТРВ на перегрев на 7 К.

 46.1 Упражнения

УПРАЖНЕНИЕ 1
Попробуйте представить последствия в работе установки, если магистраль внешнего урав-    es нивания давления по ошибке подключена к выходу из ТРВ.
(Решение на следующей странице).
УПРАЖНЕНИЕ 2
На установке с мощностью в несколько десятков кВт, оборудованной компрессором с возможностью многоступенчатого изменения производительности, выполнен монтаж, схема которого представлена на рис. 46.5.

292
Попробуйте описать работу такой схемы: установить ее преимущества и недостатки. Для того, чтобы помочь вам, мы приводим на рис. 46.6 принципиальные схемы ТРВ и небольшого трехходового электроклапана.

293
Решение на следующей странице (попробуйте найти его сами...)

Решение упражнения 1

294
Режим работы установки примем таким же, как в предыдущих примерах (см. рис. 46.7). Если монтажник по ошибке подключил полость внешнего уравнивания ТРВ к выходу из него (например, чтобы сэкономить на длине трубки диаметром 1/4"), сила Fo будет соответствовать давлению 4,6 бар на выходе из испарителя. ТРВ начнет работать точно так же, как если бы он был с внутренним уравниванием. Последствия этого для установок с широким диапазоном изменения расхода нам теперь хорошо известны!

Решение упражнения 2

295
Когда компрессор работает (см. рис. 46.8), на электроклапан подано питание и его общий выход (то есть выход, который никогда не закрывается) соединен с входом 2, который подключен к выходу из испарителя. В результате, давление Ро, установившееся на выходе из испарителя, действует снизу на мембрану ТРВ, который работает вполне нормально, поддерживая постоянный перегрев независимо от режима работы компрессора. Когда регулятор будет останавливать компрессор, вначале он отключит напряжение на трехходовом электроклапане, не прекращая работы компрессора. Что произойдет в этот момент?

296В отсутствие напряжения трехходовой электроклапан закроет вход 2 и соединит вход 1 с общим выходом (см. рис. 46.9). В этот момент высокое давление, действующее на входе в ТРВ (Рк), проникает в полость под мембраной ТРВ, ТРВ плотно закрывается, испаритель не может больше подпитываться жидкостью, и пока еще работающий компрессор начинает ва-куумирование испарителя.

297

Следовательно, компрессор будет остановлен по команде от реле НД, обеспечивающего остановку с предварительным вакуумированием, хотя на жидкостной магистрали электроклапан не установлен (см. раздел 29. "Остановка холодильных компрессоров ").
Таким образом, данная схема позволяет с помощью небольшого электроклапана 1/4" обеспечить точно такую же автоматизацию процесса остановки компрессора с предварительным вакуумированием, как и с помощью огромного электроклапана 1" 1/8 (в примере на рис. 46.10), установленного на жидкостной магистрали. Следовательно, это очень экономичная схема, которая иногда встречается в установках большой мощности.

Напомним, что компрессоры с несколькими ступенями производительности останавливают с предварительным вакуумированием испарителя, в основном, с целью возврата масла, которое находится в контуре, в картер компрессора (см. раздел 37. "Проблемы возврата масла").
Что касается недостатков данной схемы, то к ним, прежде всего, относится возникновение на мембране ТРВ очень сильных напряжений под действием значительных величин давления, которые могут устанавливаться в жидкостной магистрали (более 22 бар для конденсатора с воздушным охлаждением при работе на R22). Следовательно, для такой схемы важно, чтобы изготовитель ТРВ допускал указанные нагрузки для материала мембраны, в противном случае мембрана очень быстро разрушится и после этого нужно будет заменять ТРВ, а потом все равно устанавливать на жидкостной магистрали большой электроклапан.
Примечание: маленький фильтр-осушитель 1/4" служит только как фильтр для защиты небольших проходных сечений электроклапана 1/4" от возможных посторонних частиц (кусочки меди, капельки флюса или припоя...), которые могут нарушить его работоспособность.

Проблема максимальной разности давления открытия
Другой недостаток может возникнуть, если рабочее давление в полости электроклапана превышает величины, предусмотренные изготовителем. Поскольку значимость этой проблемы в ряде моментов недооценивается, воспользуемся случаем, чтобы рассмотреть влияние максимальной разности давления открытия на работу электроклапана (см. рис. 46.11).

298
В нерабочем положении обмотка электроклапана не запитана и его подвижная часть подвержена действию следующих сил:
►  Поз. 1: Рконд действует на каждую из двух больших поверхностей клапана в противоположных направлениях. Результирующая сила равна нулю (одна действует вниз, другая вверх).
►  Поз. 2: Рконд действует также на малую поверхность (площадь которой равна площади проходного сечения седел клапана) верхнего клапана и прижимает его вниз.
►  Поз. 3: Рисп действует на малую поверхность нижнего клапана и отжимает его вверх в направлении, противоположном действию силы давления Рконд.
Кроме того, возвратная пружина прижимает подвижную часть электроклапана книзу и, с некоторым упрощением, можно утверждать, что электроклапан сможет открыться только если электромагнит + Рисп > пружина + Рконд
или электромагнит > пружина + Рконд — Рисп.
Электромагнит и пружина развивают постоянные усилия, определенные конструктором. А вот разность Рконд — Рисп может меняться в очень широких пределах в зависимости от типа установки (кондиционер, морозильник...), времени года (для конденсаторов с воздушным охлаждением летом Рконд растет...).
Поэтому разработчик оговаривает максимальную разность давления открытия, при превышении которой клапан не может открываться при подаче напряжения на его обмотку.
Таким образом, сочетание внутренних сил может воспрепятствовать втягиванию вверх сердечника электромагнитом, если разность между Рконд и Рисп будет очень большой (как правило, максимально допустимая разность находится в пределах от 17 до 19 бар).
Последствия такой аномалии в работе электроклапана для функционирования установки вы легко можете себе представить!