Пособие для ремонтника

2. Конденсаторы с воздушным охлаждением.

2. КОНДЕНСАТОРЫ С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ.
2.1. НОРМАЛЬНАЯ РАБОТА


Рассмотрим схему на рис. 2.1, представляющую конденсатор воздушного охлаждения при нормальной работе в разрезе. Допустим, что в конденсатор поступает хладагент R22.

8
Точка А. Пары R22, перегретые до температуры около 70°С, покидают нагнетающий патрубок компрессора и попадают в конденсатор при давлении около 14 бар.

Линия А-В. Перегрев паров снижается при постоянном давлении.

Точка В. Появляются первые капли жидкости R22. Температура равна 38°С, давление по-прежнему около 14 бар.

Линия В-С. Молекулы газа продолжают конденсироваться. Появляется все больше и больше жидкости, остается все меньше и меньше паров.
Давление и температура остаются постоянными (14 бар и 38°С) в соответствии с соотношением "давление-температура" для R22.

Точка С. Последние молекулы газа конденсируются при температуре 38°С, кроме жидкости в контуре ничего нет. Температура и давление остаются постоянными, составляя около 38°С и 14 бар соответственно.

Линия C-D. Весь хладагент сконденсировался, жидкость под действием воздуха, охлаждающего конденсатор с помощью вентилятора, продолжает охлаждаться.

Точка D. R22 на выходе из конденсатора только в жидкой фазе. Давление, по-прежнему около 14 бар, но температура жидкости понизилась примерно до 32°С.

Поведение смесевых хладагентов типа гидрохлорфторугперодов (ГХФУ) с большим температурным глайдом см. в пункте Б раздела 58.
Поведение хладагентов типа гидрофторуглеродов (ГФУ), например, R407C и R410A см. в разделе 102.

Изменение фазового состояния R22 в конденсаторе можно представить следующим образом (см. рис. 2.2).

9


От А до В. Снижение перегрева паров R22 от 70 до 38°С (зона А-В является зоной снятия перегрева в конденсаторе).

В точке В появляются первые капли жидкости R22.
От В до С. Конденсация R22 при 38 °С и 14 барах (зона В-С является зоной конденсации в конденсаторе).

В точке С сконденсировалась последняя молекула пара.
От С до D. Переохлаждение жидкого R22 от 38 до 32°С (зона C-D является зоной переохлаждения жидкого R22 в конденсаторе).




В течение всего этого процесса давление остается постоянным, равным показанию манометра ВД (в нашем случае 14 бар).
Рассмотрим теперь, как ведет себя при этом охлаждающий воздух (см. рис. 2.3).


10
Наружный воздух, который охлаждает конденсатор и поступает на вход с температурой 25°С, нагревается до 31 °С, отбирая тепло, выделяемое хладагентом.

Мы можем представить изменения температуры охлаждающего воздуха при его прохождении через конденсатор и температуру конденсатора в виде графика (см. рис. 2.4) где:

11
tae - температура воздуха на входе в конденсатор.

tas -температуравоздуха на выходе из конденсатора.

tK - температура конденсации, считываемая с манометра ВД.

А6 (читается: дельта тэта) разность (перепад) температур.


В общем случае в конденсаторах с воздушным охлаждением перепад температур по воздуху А0 = (tas - tae) имеет значения от 5 до 10 К (в нашем примере 6 К).
Значение разности между температурой конденсации и температурой воздуха на выходе из конденсатора также имеет порядок от 5 до 10 К (в нашем примере 7 К).
Таким образом, полный температурный напор (tK — tae) может составлять от 10 до 20 К (как правило, его значение находится вблизи 15 К, а в нашем примере он равен 13 К).

Понятие полного температурного напора очень важно, так как для данного конденсатора эта величина остается почти постоянной.

Используя величины, приведенные в вышеизложенном примере, можно говорить, что для температуры наружного воздуха на входе в конденсатор, равной 30°С (то есть tae = 30°С), температура конденсации tk должна быть равна:
tae + Дбполн = 30 + 13 = 43°С,
что будет соответствовать показанию манометра ВД около 15,5 бар для R22; 10,1 бар для R134a и 18,5 бар для R404A.

Заметим, что рекомендуемые значения А6 для конденсаторов с воздушным охлаждением одинаково справедливы как для торгового холодильного оборудования, так и для установок искусственного климата.

 2.2. ПЕРЕОХЛАЖДЕНИЕ В КОНДЕНСАТОРАХ С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ

Одной из наиболее важных характеристик при работе холодильного контура, вне всякого сомнения, является степень переохлаждения жидкости на выходе из конденсатора.

Переохлаждением жидкости будем называть разность между температурой конденсации жидкости при данном давлении и температурой самой жидкости при этом же давлении.

Мы знаем, что температура конденсации воды при атмосферном давлении равна 100°С. Следовательно, когда вы выпиваете стакан воды, имеющий температуру 20°С, с позиции теплофизики вы пьете воду, переохлажденную на 80 К!

12
В конденсаторе переохлаждение определяется как разность между температурой конденсации (считывается с манометра ВД) и температурой жидкости, измеряемой на выходе из конденсатора (или в ресивере).

В примере, приведенном на рис. 2.5, переохлаждение П/О = 38 — 32 = 6 К.
Нормальная величина переохлаждения хладагента в конденсаторах с воздушным охлаждением находится, как правило, в диапазоне от 4 до 7 К.

Когда величина переохлаждения выходит за пределы обычного диапазона температур, это часто указывает на аномальное течение рабочего процесса.
Поэтому ниже мы проанализируем различные случаи аномального переохлаждения.

*Значения температур здесь и далее приводятся в градусах Цельсия, а разности температур — в Кельвинах. Напомним, что 1 Кельвин численно равен 1°С, a t(°C) = Т(К) — 273,16 (прим. ред.).

 2.3. АНАЛИЗ СЛУЧАЕВ АНОМАЛЬНОГО ПЕРЕОХЛАЖДЕНИЯ.

Одна из самых больших сложностей в работе ремонтника заключается в том, что он не может видеть процессов, происходящих внутри трубопроводов и в холодильном контуре. Тем не менее, измерение величины переохлаждения может позволить получить относительно точную картину поведения хладагента внутри контура.

Заметим, что большинство конструкторов выбирают размеры конденсаторов с воздушным охлаждением таким образом, чтобы обеспечить переохлаждение на выходе из конденсатора в диапазоне от 4 до 7 К. Рассмотрим, что происходит в конденсаторе, если величина переохлаждения выходит за пределы этого диапазона.

А) Пониженное переохлаждение (как правило, меньше 4 К).

13
На рис. 2.6 приведено различие в состоянии хладагента внутри конденсатора при нормальном и аномальном переохлаждении.
Температура в точках tB = tc = tE = 38°С = температуре конденсации tK. Замер температуры в точке D дает значение tD = 35 °С, переохлаждение 3 К.

Пояснение. Когда холодильный контур работает нормально, последние молекулы пара конденсируются в точке С. Далее жидкость продолжает охлаждаться и трубопровод по всей длине (зона C-D) заполняется жидкой фазой, что позволяет добиваться нормальной величины переохлаждения (например, 6 К).

В случае нехватки хладагента в конденсаторе, зона C-D залита жидкостью не полностью, имеется только небольшой участок этой зоны, полностью занятый жидкостью (зона E-D), и его длины недостаточно, чтобы обеспечить нормальное переохлаждение.
В результате, при измерении переохлаждения в точке D, вы обязательно получите его значение ниже нормального (в примере на рис. 2.6 — 3 К).
И чем меньше будет хладагента в установке, тем меньше будет его жидкой фазы на выходе из конденсатора и тем меньше будет его степень переохлаждения.
В пределе, при значительной нехватке хладагента в контуре холодильной установки, на выходе из конденсатора будет находиться парожидкостная смесь, температура которой будет равна температуре конденсации, то есть переохлаяедение будет равно О К (см. рис. 2.7).

14

                                              tB = tD = tK = 38°С. Значение переохлаждения П/О = 38 - 38 = О К.

Таким образом, недостаточная заправка хладагента всегда приводит к уменьшению переохлаждения.

Отсюда следует, что грамотный ремонтник не будет без оглядки добавлять хладагент в установку, не убедившись в отсутствии утечек и не удостоверившись, что переохлаждение аномально низко!

Отметим, что по мере дозаправки хладагента в контур, уровень жидкости в нижней части конденсатора будет повышаться, вызывая увеличение переохлаждения.
Перейдем теперь к рассмотрению противоположного явления, то есть слишком большого переохлаждения.

Б) Повышенное переохлаждение (как правило, больше 7 к).

15

                                    tB = % = tK = 38°С. tD = 29°С, следовательно переохлаждение П/О = 38 - 29 = 9 К.


Пояснение. Выше мы убедились, что недостаток хладагента в контуре приводит к уменьшению переохлаждения. С другой стороны, чрезмерное количество хладагента будет накапливаться в нижней части конденсатора.

В этом случае длина зоны конденсатора, полностью залитая жидкостью, увеличивается и может занимать весь участок E-D. Количество жидкости, находящееся в контакте с охлаждающим воздухом, возрастает и величина переохлаждения, следовательно, тоже становится больше (в примере на рис. 2.8 П/О = 9 К).

В заключение укажем, что измерения величины переохлаждения являются идеальными для диагностики процесса функционирования классической холодильной установки.
В ходе детального анализа типовых неисправностей мы увидим как в каждом конкретном случае безошибочно интерпретировать данные этих измерений.

Слишком малое переохлаждение (менее 4 К) свидетельствует о недостатке хладагента в конденсаторе. Повышенное переохлаждение (более 7 К) указывает на избыток хладагента в конденсаторе.

2.4. УПРАЖНЕНИЕ


Выберите из 4-х вариантов конструкций конденсатора с воздушным охлаждением, представленных на рис. 2.9, тот, который, по вашему мнению, является наилучшим. Объясните почему?

16

 Решение


Под действием силы тяжести жидкость накапливается в нижней части конденсатора, поэтому вход паров в конденсатор всегда должен располагаться сверху. Следовательно, варианты 2 и 4 по меньшей мере представляют собой странное решение, которое не будет работоспособным.

Разница между вариантами 1 и 3 заключается, главным образом, в температуре воздуха, который обдувает зону переохлаждения. В 1-м варианте воздух, который обеспечивает переохлаждение, поступает в зону переохлаждения уже подогретым, поскольку он прошел через конденсатор. Наиболее удачной следует считать конструкцию 3-го варианта, так как в ней реализован теплообмен между хладагентом и воздухом по принципу противотока.

Этот вариант имеет наилучшие характеристики теплообмена и конструкции установки в целом.
Подумайте об этом, если вы еще не решили, какое направление прохождения охлаждающего воздуха (или воды) через конденсатор вам выбрать.